A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance
نویسندگان
چکیده
A multi-year, multi-technique study was conducted to measure evapotranspiration and its components within an uneven-aged mixed deciduous forest in the Southeastern United States. Four different measurement techniques were used, including soil water budget (1 year), sap flow (2 years), eddy covariance (5 years), and catchment water budget (31 years). Annual estimates of evapotranspiration were similar for the eddy covariance and catchment water balance techniques, averaging 571 ± 16 mm (eddy covariance) and 582±28 mm (catchment water balance) per year over a 5-year period. There were qualitative similarities between sap flow and eddy covariance estimates on a daily basis, and sap flow estimates of transpiration were about 50% of annual evapotranspiration estimated from eddy covariance and catchment studies. Soil evaporation was estimated using a second eddy covariance system below the canopy, and these measurements suggest that soil evaporation explains only a small portion of the difference between sap flow estimates of transpiration and eddy covariance and catchment water budget estimates of evapotranspiration. Convergence of the catchment water balance and eddy covariance methods and moderately good energy balance closure suggests that the sap flow estimates could be low, unless evaporation of canopy-intercepted water was especially large. The large species diversity and presence of ring-porous trees at our site may explain the difficulty in extrapolating sap flow measurements to the spatial scales representative of the eddy covariance and catchment water balance methods. Soil water budget estimates were positively correlated with eddy covariance and sap flow measurements, but the data were highly variable and in error under conditions of severe surface dryness and after rainfall events. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Evapotranspiration of a Mid-rotation Loblolly Pine Plantation and a Recently Harvested Stands on the Coastal Plain of North Carolina, U.s.a
Evapotranspiration (ET) is the primary component of the forest hydrologic cycle, which includes plant transpiration, canopy rainfall interception, and soil evaporation. Quantifying ET processes and potential biophysical regulations is needed for assessing forest water management options. Loblolly pines are widely planted in the coastal plain of the Southeastern US, but their water use is rarely...
متن کاملEnvironmental controls on sap flow in a northern hardwood forest.
Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in asses...
متن کاملTranspiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods.
Three independent methods were used to evaluate transpiration of a boreal forest: the branch bag, sap flow and eddy covariance methods. The branch bag method encloses several thousand needles and gives a continuous record of branch transpiration. The sap flow method provides a continuous record of sap velocity and an estimate of tree transpiration. The eddy covariance method typically measures ...
متن کاملRelationship between topography, land use and soil moisture in loess hillslopes
The relationship between topography, land use, and topsoil moisture storage is investigated for a small catchment with undulating deep loess hilslopes in the south of the Netherlands. For a period of 10 months, soil moisture profiles have been measured weekly at 15 locations throughout the catchment. A Generalized Additive Model was employed to find relationships between the various factors inf...
متن کاملAnnual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran)
Fresh water supply and its security encounter a high level of fluctuating variability under global climate changes. To address these concerns in catchment water management, a good understanding of land use/cover impacts on the hydrological cycle affecting water supply is crucial. The objective of this study is to define a model to investigate the impact of existing land use/cover on water yield...
متن کامل